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Multiscale Analysis for Interacting Particles:
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We investigate the derivation of semilinear relaxation systems and scalar conser-
vation laws from a class of stochastic interacting particle systems. These systems
are Markov jump processes set on a lattice, they satisfy detailed mass balance
(but not detailed balance of momentum), and are equipped with multiple
scalings. Using a combination of correlation function methods with compactness
and convergence properties of semidiscrete relaxation schemes we prove that, at
a mesoscopic scale, the interacting particle system gives rise to a semilinear
hyperbolic system of relaxation type, while at a macroscopic scale it yields a
scalar conservation law. Rates of convergence are obtained in both scalings.

KEY WORDS: Interacting particle systems; multiple scales; correlation func-
tion method; scalar conservation laws; relaxation systems; semidiscrete schemes;
rates of convergence.

1. INTRODUCTION

We investigate a class of interacting particle systems (IPS) set on a one
dimensional lattice. The IPS consists of two kinds of particles: the first kind
is of mass l and moves to the left with velocity &1, while the second kind
is of mass 1 (or more generally of mass m) and moves to the right with
velocity +1. The IPS evolves under a combination of two stochastic
mechanisms: First, streaming of particles following their velocity at
exponentially distributed times. Second, an exchange mechanism where a
fixed number of l particles moving with velocity +1 merge to create a
single particle moving with velocity &1 (or more generally m particles
moving with velocity &1); vice versa, one particle (or more generally m
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particles) moving with velocity &1 breaks into l particles moving with
velocity +1. Both processes occur with configuration dependent rates (see
Section 2). The exchange mechanism satisfies detailed mass balance, but
violates detailed balance of linear momentum. The objective of this article
is to study the behavior of the particle system in two scaling limits. We will
prove: (i) At a mesoscopic scale, after suitable averaging and space rescal-
ing, the IPS converges to a relaxation system equipped with a mass balance
law. (ii) There exists a continuum of macroscopic scalings, of both lattice
size and time, so that the averaged particle system relaxes to the entropy
solution of a scalar conservation law.

The particle systems studied here are generalizations of the IPS model-
ing the Carleman system in De Masi and Presutti.(1) The streaming
mechanisms are the same in both cases. By contrast the ``collision''
mechanisms differ: While in the Carleman case, two particles with velocity
+1 are converted into two particles with velocity &1, for the present IPS
the velocity exchange process is not symmetric. As a result, while the
Carleman model yields at a macroscopic limit a trivial conservation law,
for the particle system considered here��when l{m��the macroscopic
limit is described by a quasilinear hyperbolic equation.

The mesoscopic limit of the IPS is described by relaxation systems of
the type

�tw+U0 } {w=
1
=

:
N

i=1

Gi (w, zi )

(1.1)

�tzi+Ui } {zi=&
1
=

G i (w, zi ), i=1,..., N

studied by Katsoulakis and Tzavaras.(2) The system (1.1) describes the
dynamics of the state vector (w, Z), Z=(z1 ,..., zN), where U0 , U1 ,..., UN # RN

are convective velocities, and Gi (w, zi ) are smooth functions that are
decreasing in w and increasing in zi , and =>0 is a relaxation parameter.
It is assumed that each equation Gi (w, zi )=0 has a unique solution zi=
gi (w), with gi (w) a smooth strictly increasing function. The curve

w [ (w, g1(w),..., gN(w)), w # R

constitutes the manifold of local equilibria (or Maxwellian states). Solu-
tions of (1.1) satisfy the conservation law (corresponding to mass balance)

�t \w+ :
N

i=1

zi++div \U0w+ :
N

i=1

Uizi+=0

716 Katsoulakis and Tzavaras



As = � 0, the local equilibria are enforced, and the limiting dynamics is
described by weak solutions of

�t \w+ :
N

i=1

gi (w)++div \U0w+ :
N

i=1

Ui gi (w)+=0 (1.2)

It is shown in ref. 2 that solutions of (1.1) are precompact in L1 and that
the moment u=w+�N

i=1 zi converges as = � 0 to an entropy solution of
(1.2).

The analogy to the kinetic theory of dilute gases is transparent. In an
ideal gas the molecules are caricatured as a set of hard spheres, evolving
under Newtonian dynamics and undergoing elastic collisions. A reduced��
mesoscopic��description of this IPS is given by the Boltzmann equation.
The Boltzmann equation still does not describe macroscopic quantities but
rather the evolution of the probability distribution of particles in the phase
space. When the mean free path goes to zero, the solution of the
Boltzmann equation relaxes to a Maxwellian distribution and the process
yields a macroscopic description via fluid equations. In principle, one
would hope to derive rigorously the fluid equations directly from particle
dynamics, using the Boltzmann equation as a mesoscopic-intermediate
step. This goal seems quite ambitious as only parts of this program are at
present rigorous, while the remaining obstacles are difficult to overcome.

Here, we pursue this general strategy in the much simpler context of
a theory equipped with only one detailed balance law, the balance of mass.
We also restrict to one-space dimension. The proposed IPS can be
naturally interepreted as a microscopic model for a convection-reaction
process. Building on refs. 1 and 2 we will show: (a) At mesoscopic scales
the IPS approximates the one-dimensional version of the relaxation model
(1.1) (cf. Theorem 2.1). (b) At macroscopic scales it approximates the
entropy solution of a scalar conservation law; this is accomplished for a con-
tinuum of space�time scales given as powers of the lattice size (Theorem 2.2).
Error estimates are obtained for the convergence of the stochastic IPS at
both the mesoscopic and macroscopic limits.

In contrast to the Newtonian dynamics of rarefied gases which is
deterministic, the particle systems considered have stochastic dynamics.
A quite surprising fact concerning the derivation of discrete velocity
systems from microscopic considerations was discovered by Uchyiama(3):
There exist models of deterministic particle dynamics with finitely many
velocities that do not give rise to discrete velocity kinetic equations. On the
other hand the Carleman and Broadwell systems as well as (1.1) can be
rigorously derived from particle systems with stochastic dynamics (see
refs. 4 and 5).

717Multiscale Analysis for Interacting Particles



Convergence of stochastic IPS to various discrete velocity models is esta-
blished in Caprino�De Masi�Presutti�Pulvirenti, (4, 5 Caprino�Pulvirenti, (6)

Rezakhanlou�Tarver.(7) The convergence from mesoscopic to macroscopic
equations, in the hyperbolic context, falls in the realm of relaxation limits.
We refer to Liu, (8) Chen�Levermore�Liu, (9) Natalini, (10, 11) Katsoulakis�
Tzavaras(2) and references in these works for studies of relaxation approxi-
mations, and to Jin�Xin, (12) Tveito�Winther, (13) Katsoulakis�Kossioris�
Makridakis(14) for studies of numerical relaxation schemes. Concerning the
passage from stochastic IPS to macroscopic equations, there exist two
approaches: Investigations that establish directly, without use of meso-
scopic equations, the convergence for the exclusion and zero-range pro-
cesses to scalar conservation laws, Rezakhanlou.(15) Investigations where
the study of the mesoscopic-scale equations is the main ingredient in the
derivation of the macroscopic equations, like the study in Perthame�
Pulvirenti(16) of a class of IPS related to scalar conservation laws, as well
as the derivation of geometric evolutions, such as motion by mean curvature,
from Ising systems (e.g., Bonaventura, (17) Katsoulakis�Souganidis (18)). The
stochastic IPS in ref. 16 is patterned after the kinetic formulation of (1.2)
of Lions�Perthame�Tadmor.(19) The IPS considered here are patterned
after refs. 4 and 5 and the relaxation system in ref. 2, and have a small
number of species. We point out that the techniques presented here may be
relevant in the study of lattice Boltzmann models (cellular automata) with
a single conserved quantity.

From a technical standpoint, our analysis relies on interweaving two
tools. First, the correlation function method introduced by Lanford, (20) for
the short time derivation of the Boltzmann equation from Newtonian
dynamics, and developed for stochastic IPS by Caprino�DeMasi�Presutti�
Pulvirenti.(4) Second, on compactness and convergence properties for semi-
discrete approximations of (1.1). Semi-discrete relaxation schemes are
derived as approximations of stochastic IPS by means of the correlation
function method, and their study is a key ingredient of the rigorous deriva-
tion of (1.2) from IPS.

The contents are organized as follows. In Section 2 we introduce the
interacting particle system associated to (1.1), and present the main results
on convergence of the IPS and rates of convergence. In Sections 3 and 4
we prove Theorems 2.1 and 2.2. In Section 5 we prove compactness-
convergence properties and rates of convergence, in both mesoscopic and
macroscopic scales, for semidiscrete approximations of (1.1). In the
Appendix we present two key approximation lemmata that use the techni-
que of doubling of variables of the Kruzhkov(21) and Kuznetzov(22) theory.
The first is due to Bouchut and Perthame(23) and concerns the conservation
law (1.2). The second shows that the Kruzhkov theory may be extended to
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the class of contractive relaxation systems (1.1). These results are the basis
for obtaining rates of convergence for the IPS. Part of the results presented
here were announced in ref. 24.

2. INTERACTING PARTICLE SYSTEMS WITH RELAXATION

2.1. The One-Dimensional Model

We introduce a stochastic Interacting Particle System (IPS) set on a
one-dimensional lattice which, in a mesoscopic scaling, will converge to the
relaxation system (1.1), while, in a macroscopic scaling of lattice size and
time, will approximate the entropy solution of a conservation law. The
macroscopic system is set in the interval [0, 1] with periodic boundary
conditions. In the usual fashion, weak solutions u of the scalar conservation
law

{�tu+F(u)x=0, x # [0, 1], t>0
u(x, 0)=u0(x), u(0, t)=u(1, t)

(2.1)

are required to satisfy the Kruzhkov entropy conditions

�t |u&k|+�x[(F(u)&F(k)) sgn(u&k)]�0, in D$, for all k # R

The IPS is set on the discrete torus of the lattice Z, denoted by

Z&=[0, 1,..., M ]

where &=M&1 is the inverse of the positive integer M. There are two types
of particles on the lattice Z& : particles of mass l moving with velocity &1
and particles of mass 1 moving with velocity +1. Let '(i, _) be the number
of particles at the lattice site i # Z& with velocity _ # [&1, 1]. We define the
configuration

'=['(i, _), (i, _) # Z&_[&1, 1]]

and the set of all possible configurations X=NZ&_[&1, 1], called configura-
tion space. The updating is done through two mechanisms, ``streaming''
and ``interaction'' of particles:

I. A particle at i with velocity _, denoted by (i, _), jumps to
(i+_, _) keeping its velocity and moving one lattice unit in the direction _,
at a rate V#&1 with V, #>0 and #<<1.
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II. A number of l particles at the site i with velocity _=+1 interact
to produce a single particle at the same site i with opposite velocity
_=&1. Conversely, a single particle at the site i with velocity _=&1
breaks up into l particles at the site i with velocity _=+1. The two pro-
cesses occur at rates c(', 1, i) and c(', &1, i) respectively, satisfying the
conditions:

(i) c(', 1, i)=Dl('(i, 1)) :='(i, 1)['(i, 1)&1] } } } ['(i, 1)&l+1],

(ii) c(', &1, i)='(i, &1).

Note that if + is a product Poisson measure on X, with varying den-
sities over the lattice, such that

E+'(i, 1)=w(i)�0, E+'(i, &1)=z(i)�0, i # Z&

then

E+c(', &1, i)=z(i), E+ c(', 1, i)=w(i)l

The streaming and interaction mechanisms, endowed with periodic
conditions, give rise to a jump Markov process,

'.=['t(i, _) # N : t�0, (i, _) # Z&_[&1, 1]]

set on the configuration space X. The process is completely described by its
generator

L#=#&1Ls+Lc

where

Ls f (')=V :
(i, _)

'(i, _)[ f ('+$(i+_, _)&$(i, _))& f (')]

Lc f (n)=:
i

c(', 1, i)[ f ('+$(i, &1)&l$(i, 1))& f (')]

+c(', &1, i)[ f ('+l$(i, 1)&$ (i, &1))& f (')]

f : X [ R cylindrical, and $(i, _)( j, _$)=1 if ( j, _$)=(i, _) and equal to 0
otherwise. We refer to refs. 25 and 26 for the construction of stochastic
processes, associated with interacting particle systems.

Remark 2.1. (a) In the above model the particles do not undergo
true collisions but rather an interaction mechanism according to the rates
c(', \1, i). The interaction mechanism obeys detailed balance of mass.
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(b) The analysis concerning the mesoscopic limit of the IPS applies
to certain models involving real collisions, such as the Ruijgrok�Wu
model, (27) for which the collision rates are

c(', 1, i)=:1'(i, 1)+:3'(i, 1) '(i, &1)

c(', &1, i)=:2'(i, &1), i # Z&

with a1 , a2 , a3 positive constants. In this case E+c(', &1, i)=:2 z(i) and
E+c(', 1, i)=:1w(i)+:3w(i) z(i).

(c) We may also consider a particle system consisting of particles of
mass l traveling with velocity &1 and particles of mass m traveling with
velocity +1 and where l particles of velocity +1 are converted into m par-
ticles of velocity &1 and vice versa; then

c(', &1, i)=Dm('(i, &1))='(i, 1)['(i, 1)&1] } } } ['(i, 1)&m+1]

while c(', 1, i) satisfies condition (i). Our analysis extends to such systems
in a straightforward manner.

(d) The above particle systems generalize the IPS modeling the
Carleman system in De Masi�Presutti.(1) There, the streaming mechanism
is given also by the generator Ls , while the definition of Lc is modified so
that 2 particles of velocity 1 are converted into 2 particles of velocity &1.
Due to this symmetry, the Carleman system yields a trivial conservation
law in the hydrodynamic limit. It turns out for the particle systems con-
sidered here that, at least when l{m, the hydrodynamic limit is described
by the hyperbolic conservation law (2.1).

Heuristically, one can think of the continuous process '. through its
Markov chain approximation, which, for time step 2t<<1, is constructed
as follows (for simplicity we describe the interaction mechanism only). Let
'0 be a configuration of the initial measure on X. A site (i, _) # Z&_
[&1, 1] is selected at random and a particle (or l particles, depending on
the velocity) at i with velocity _ is converted to l particles (or one particle)
with velocity &_ with probability c('0 , _, i) 2t, while '0 remains
unchanged with probability 1&c('0 , _, i) 2t. Thus we construct the con-
figuration '2t ; we then pick randomly a new site (i $, _$) # Z&_[&1, 1] and
complete the previous procedure to construct '22t , and so on.

Next, we present the main results concerning the mesoscopic and
macroscopic behavior of the particle system defined by '. . First we
motivate the meso- and macroscopic scales through a formal discussion.
Assume that the initial distribution +0 of the process '. is a product
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Poisson measure on X, i.e. for any B=[' # X : '(i, _)=ki, _ , (i, _) # Z&_
[&1, 1]],

+0(B)= `
(i, _) # Z&_[&1, 1]

&\0
(['(i, _)=ki, _])

where &\0
is a Poisson measure with varying density on Z&_[&1, 1],

\0=\0(i, _), (i, _) # Z&_[&1, 1]:

&\0
(['(i, _)=k])=e&\0(i, _) \0(i, _)k

k!

Then, Doob's Theorem(25) implies that, under solely the influence of the
streaming mechanism Ls , the distribution +t at any time t is still a product
Poisson measure with possibly different densities. For the particle system
generated by L#=#&1Ls+Lc , we expect that, since the streaming
mechanism Ls is dominant for #<<1, the distribution +t of 't will also be
a product Poisson measure in the asymptotic limit # � 0. This observation
suggests the ``propagation of chaos'' property, i.e. that the occupation num-
bers 't(i, _) become independent��for different (i, _)'s and all times��as
# � 0, if they are independent at t=0. Furthermore, it suggests that, given
an initial product Poisson measure +0 , then for all positive times the pro-
cess '. is at an approximate local equilibrium described by a product
Poisson measure. The limit product Poisson measure on X is characterized
by the expected occupation numbers E+0

't(i, _) at each point (i, _). These
satisfy

d
dt

E+0
't(i, 1)+

V
#

[E+0
't(i, 1)&E+0

't(i&1, 1)]

=lE+0
[c('t , &1, i)&c('t , 1, i)]

d
dt

E+0
't(i, &1)+

V
#

[E+0
't(i, &1)&E+0

't(i+1, &1)]

=E+0
[c('t , 1, i)&c('t , &1, i)] (2.2)

Equation (2.2) is a semi-discrete approximation of a semilinear hyperbolic
system provided the following conditions are met: (a) # is interpreted as a
space discretization 2x of [0, 1], and (b) the term E+0

[c('t , &_, i)&
c('t , &_, i)] can be written as a function of the expected occupation num-
bers E+0

't(i, _). Condition (a) can be easily met; condition (b) is only
expected in the limit # � 0, due to the assumptions on the interaction rates
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c(', _, i) and the heuristic discussion on the anticipated asymptotic
behavior of the distribution of 't (propagation of chaos property).

Henceforth, the process '. is set on the periodic lattice

Z&=Z#=[0, 1,..., #&1]

with #&1 an integer. Then [#i ] i # Z#
is a discretization of the interval [0, 1]

with step size 2x=#. We consider the quantities

E+0
't(i, 1), E+0

l't(i, &1)

describing the expected values of the masses of the particle system. From
(2.2) and the ``propagation of chaos'' property, their limiting values, as
# � 0, \+(i, t) and \&(i, t) are expected to satisfy the relaxation system

{\+
t +V\+

x =G(\+, \&)
\&

t &V\&
x =&G(\+, \&)

(x, t) # [0, 1]_(0, T ) (2.3)

where

G(\+, \&)=\&& g(\+) , g(\+)=l(\+)l

subject to periodic conditions in [0, 1]. We emphasize that (2.3) is derived
from the expected values of the mass occupation numbers E+0

't(i, 1),
E+0

l't(i, &1) and, for convenience, we define a new process '̂. as follows:

'̂t(i, 1)='t(i, 1), '̂t(i, &1)=l't(i, &1)

The derivation of (2.3) from the process '̂. is justified in Theorem 2.1:
if the initial data of (2.3) are the limits of the average occupation numbers
associated with the initial measure +0 , then the average (mass) occupation
numbers (E+0

'̂t(i, 1), E+0
'̂t(i, &1)) converge to the solution (\+, \&), as

# � 0.
Returning to Remark 2.1(c), we note that the rates c(', _, i) can be

selected so that G(\+, \&)=ml[(\&�l)m&(\+�m)l], where m and l are
positive integers; the analysis below applies to all such models.

After the space�time hyperbolic rescaling

(x, t) [ (x�=, t�=) (2.4)
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the system (2.3)��defined on [0, 1�=]_(0, T�=)��becomes a relaxation
system,

{
\+

t +V\+
x =

1
=

G(\+, \&)

\&
t &V\&

x =&
1
=

G(\+, \&)
(x, t) # [0, 1]_(0, T ) (2.5)

equipped with the conservation law

�
�t

(\++\&)+V
�

�x
(\+&\&)=0 (2.6)

and admitting the local equilibria

C=[(\+, \&) # R2 : G(\+, \&)=\&& g(\+)=0]

For G decreasing in \+ and increasing in \&, the system (2.5) is an L1 con-
traction and, as = � 0, the ``mass density'' u==\++\& converges to the
entropy solution u=\++ g(\+) of the conservation law

�t(\++ g(\+))+V�x(\+& g(\+))=0, (x, t) # [0, 1]_(0, T ) (2.7)

with periodic boundary conditions. (See ref. 2 for the initial value problem;
the proof for periodic boundary conditions follows without serious modifi-
cations.)

Next, we ask if there are space�time scalings so that the IPS '. yields
in the limit entropy solutions of (2.7). It is proved in Theorem 2.2 that
there is a positive number r* and a continuum of hyperbolic scalings,

Z#_(0, T ) [ Z#=_(0, T�=)

where #&1=&1 is a positive integer and ==#r for any r<r*, such that, when
the process '. is observed in this space�time window, the averaged total
particle number E+0

't(i, 1)+'t(i, &1) converges to the entropy solution
of (2.7).

Before stating our main results we introduce some notation. For n # N,
define the sets

Mn
#=[`

�
=(`1 ,..., `n) : `1{ } } } {`n and `k=(ik , _k) # Z#_[&1, 1]]
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and

Mn
#==[`

�
=(`1 ,..., `n): `1{ } } } {`n and `k=(ik , _k) # Z#=_[&1, 1]]

Also recall that

'̂t(i, 1)='t(i, 1), '̂t(i, &1)=l't(i, &1)

A. Mesoscopic Limit. We consider the process '. defined on the
periodic lattice Z# . Let +#

0 be a slowly varying Poisson product measure on
X such that

E+ #
0
'̂(i, 1)=\+

0 (#i) and E+ #
0
'̂(i, &1)=\&

0 (#i), i # Z# (2.8)

where \\
0 are periodic in [0, 1].

Theorem 2.1. Let (\+(x, t), \&(x, t)) be the solution of (2.3)
emanating from periodic initial data \+

0 , \&
0 # BV & L�([0, 1]). Then, for

T>0 there exists r̂ determined by (4.17) such that for any #>0

sup
t # [0, T ]

#n :
`
�
# M

n
#
}E+ #

0
`
n

k=1

'̂t(ik , _k) a& `
n

k=1

\_k(#ik , t) }=O(# r̂)

where O( } ) depends on n and the L� and BV norms of the initial data.

B. Macroscopic Limits. Here we define the process '. on the
periodic lattice Z#= and assume that:

(i) +#
0 is a slowly varying Poisson product measure on X such that

E+ #
0
'̂(i, 1)=\+

0 (#=i), E+#
0
'̂(i, &1)=\&

0 (#=i), i # Z#=

(ii) \\
0 # BV & L�([0, 1]).

(iii) &u0=&u0&L1(R)=o(1), where u0==\+
0 +\&

0 , and ===(#)=#r.

Theorem 2.2. Let u be the solution of (2.7) corresponding to the
relaxation limit of (2.5). There is a constant r*>0 determined by (4.14)
such that for r<r*, ==#r, any fixed n and T>0, we have

lim
# � 0

sup
t # [0, T�=]

(#=)n :
i1{ } } } {in

}E+ #
0

`
n

k=1

['̂t(ik , 1)+'̂t(ik , &1)]

& `
n

k=1

u(#=ik , =t) }=0
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In addition, if &G(\+
0 , \&

0 )&L1([0, 1])=O(=), we have the error estimate

sup
t # [0, T�=]

(#=)n :
i1{ } } } {in

}E+ #
0

`
n

k=1

['̂t(ik , 1)+'̂t(ik , &1)]& `
n

k=1

u(#=ik , =t) }
=O(- =)

where O( } ) depends on n and the L� and BV norms of the initial data.

Remark 2.2. Similar statements to Theorems 2.1 and 2.2 can be
proved for the general correlation functions of the process '. : for any n
points (not necessarily distinct), `1 ,..., `n , where `k=(ik , _k) # Z&_
[&1, 1], k=1,..., n, we define the n-correlation function

ft(!; +0) :=E+0
D(!, 't)

where !: Z&_[&1, 1] [ N, !(`)=�n
k=1 $`k

(`), ($`k
(`)=1 if `=`k , and 0

otherwise) and |!|=�` !(`). Also,

D(!, ')= `
` # Z&_[&1, 1]

D!(`)('(`))

where

1, k=0

Dk(n)={0, k>n
n(n&1) } } } (n&k+1), k�n

If `1{ } } } {`n , then E+0
D(!, 't)=E+0

>n
k=1 't(ik , _k), as in the state-

ments of Theorems 2.1 and 2.2. On the other hand, if `1= } } } =`n , then

E+0
D(!, 't)=E+0

'(i1 , _1)['(i1 , _1)&1] } } } ['(i1 , _1)&n+1]

Without significant changes��we only need to modify the definition of
the v-functions in Section 3��we may show a more general version of
Theorem 2.1 for the correlation functions:

sup
t # [0, T ]

#n :
|!| =n }E+ #

0
D(!, '̂t)& `

`=(i, _)

\_(#i, t)!(`) }=O(# r̂) (2.9)

An analogous statement, corresponding to Theorem 2.2, also holds. As
pointed out in the formal discussion earlier, Theorems 2.1 and 2.2 and
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more specifically their versions for general correlation functions indicate
that the process '. remains in both space�time windows in approximate
local equilibrium, i.e., as # � 0 its distribution is a product Poisson measure
with slowly varying densities, given by the solution of (2.3) in the case of
the mesoscopic limit and by the entropy solution of (2.7) in the macro-
scopic case.

We conclude with remarks on the technical aspects of the proofs. In
view of the relationship between (2.3), (2.5) and (2.7), to prove Theorem 2.2
it suffices to demonstrate that, for a long time interval [0, T=&1],

E+ #
0
'̂t(i, \1)r\\(#i, t) (2.10)

where (\+, \&) solves (2.3) and ==#r*, for some r*>0 to be determined.
(For Theorem 2.1 the same asymptotic estimate must be established in the
shorter interval [0, T ].) An important tool for handling such questions is
the correlation function method in refs. 20, 4, and 5. There are the following
problems to resolve. While the IPS and the systems in refs. 4 and 5 con-
serve the total number of particles for #>0, it is conceivable that as # � 0
the number of particles at a given site tends to infinity. In fact, the correla-
tion function method yields (2.10) for short times, but, as there is no
available global a priori bound for the correlation functions (as it happens
in birth-death IPS), it is conceivable that they blow up in finite time. This
suggests to discretize in time, in order to obtain the required asymptotic
approximations in [0, T ] or [0, T=&1]. A second problem, associated with
the macroscopic limit of Theorem 2.2 (and not present in the mesoscopic
limits of refs. 4 and 5 or in Theorem 2.1), is that the time scale t [ t�= is
long and the errors in the approximation (2.10) can add up as = � 0. Both
are overcome by controlling the error at each time step, using the L1-con-
traction property and the L� stability of (2.3) (see Lemmata 4.1�4.2).

Finally the IPS, being a jump process, is close only to a semidiscrete
approximation of (2.3). The aforementioned strategy will work provided
that semidiscrete schemes converge to the entropy solution of (2.7). The
convergence, stability and error estimates for semidiscrete schemes are
addressed in Section 5. The convergence rates, in Theorems 2.1 and 2.2,
follow from a combination of error estimates for semidiscrete schemes and
the short time analysis for the correlation functions, presented in Section 3.

2.2. The Multidimensional Model

We present a generalization of the interacting particle model in several
space dimensions, which at mesoscopic scales is expected to give rise to the
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relaxation system (1.1), while at macroscopic scales is expected to converge
to the conservation law (1.2). The particle system is set on the discrete
torus of the lattice ZN,

ZN
& =ZN mod(M )

where &=M&1 is the inverse of the positive integer M. At each lattice site
q # ZN

& there are N+1 species of particles each moving with their velocity
_ # U=[e0 , e1 ,..., eN]. For velocities we take e1 ,..., eN to be the usual basis
of RN and e0=&�N

i=1 |iei , where |i are positive constants such that
q+e0 # ZN

& for all q # ZN
& . We denote by '(q, _) the number of particles at

the site q # ZN
& with velocity _ # U and define the configuration space

X=NZ&
N_U. The IPS is set on the periodic lattice ZN

& , the updating is done
through mechanisms of ``streaming'' and ``interaction'' of particles, and it
gives rise to a jump Markov process,

'.=['t(q, _) # N : t�0, (q, _) # ZN
& _U ]

on the configuration space X.

I. Let V0 , V1 ,..., VN>0, #>0. In the streaming mechanism, a par-
ticle (q, ei ), located at the site q # ZN

& with velocity _=ei , i=0,..., N, jumps
to (q+ei , ei ) keeping the same velocity, at a rate Vi #&1 with #<<1.

II. The particles moving along perpendicular directions or in the
same direction do not collide with each other. The particles at (q, e0)
collide with particles at (q, ei ), i=1,..., N and exchange velocities: e0 is
converted to ei with rate c(', e0 , ei , q) and e i is converted to e0 with rate
c(', ei , e0 , q), for all i=1,..., N and q # ZN

& . The rates satisfy the conditions:

(i) c(', _, _$, q) is a polynomial in '(q, _),

(ii) c(', _, _$, q)�0 for all ' # X with equality holding if '(q, _)=0,
and

(iii) if + is a product Poisson measure on X such that E+'(q, e0)=
w(q)�0, E+'(q, ei )=zi (q)�0, q # ZN

& , then

E+c(', ei , e0 , q)=zi (q), E+c(', e0 , ei , q)= gi (w(q))

for given increasing polynomials gi , i=1,..., N, with gi (0)=0.
The resulting process is described by its generator L#=#&1Ls+Lc ,

where
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Ls f (')= :
N

i=0

:
q # Z&

N
Vi '(q, ei )[ f ('+$(q+ei , ei)

&$(q, ei)
)& f (')]

Lc f (')= :
N

i=1

:
q # Z&

N
[c(', ei , e0 , q)[ f ('+$(q, e0)&$(q, ei)

)& f (')]

+c(', e0 , ei , q)[ f ('+$(q, ei)
&$(q, e0))& f (')]]

f : X [ R cylindrical, and $(q, _)(q$, _$)=1 if (q$, _$)=(q, _), and equal to 0
otherwise.

Following (2.2) we formally see that the average particle numbers

E+0
't(q, e0)=w#(#q, t), E+0

't(q, ei )=z#
i (#q, t), i=1,..., N

converge to a solution (w, z1 ,..., zN) of (1.1), where ==1, Gi (w, zi )=
zi& gi (w), Ui=Viei , i=1,..., N, and U0=&V0(|1 ,..., |N)=V0 e0 . Note
that |Ui |=Vi , i=1,..., N, and |U0 |=V0 |e0 |. At macroscopic scales we
expect to obtain the conservation law (1.2), as in Theorem 2.2. In fact, the
analysis in Section 5 holds for more than one space dimensions, so we
could conclude the proof with the techniques of this paper, provided one
shows that the Lemmata in Section 3 hold for the multidimensional model
for certain classes of rates.

Observe that the particle system introduced in Section 2a fits into the
above form, and one could easily state special multi-dimensional models
that satisfy detailed balance of mass.

3. PRELIMINARY LEMMATA

In this section we present some background material necessary for the
sequel. The proofs are straightforward modifications of results in refs. 4 and
5 for the Carleman and Broadwell systems. We also refer to the monograph
by De Masi and Presutti.(1)

We first comment on the convergence of the particle system of Sec-
tion 2.1 to the semilinear hyperbolic system (2.3). The proof for short times
follows along the aforementioned results for the Carleman and Broadwell
systems; the basic technique goes back to Lanford, (20) who derived the
Boltzmann equation from the hard sphere dynamics for short times (see
also Spohn(28)). We briefly sketch the steps of the proof and we refer to
ref. 1 for more details and references to related works.

We consider the n-correlation functions defined in Remark 2.2,
ft(!; +0) :=E+0

D(!, 't). Instead of studying directly the hierarchy of equa-
tions for ft(!; +0), we define a suitable dual process !. with generator
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#&1Ls*+L1 , where Ls* is the formal adjoint of Ls , and the operator L1 will
be defined below. Then we consider the direct product of the !. and '. pro-
cesses and denote by E� the corresponding expectation. We have,

d
ds

E� D(!t&s , 's)=E� LcD(!t&s , 's)&E� L1 D(!t&s , 's)

The operator L1 is selected so that in the previous relation the quadratic
and higher order terms cancel, and thus the right hand side depends only
on combinations of terms of the type E� !t&s(i, _) D(!� t&s , 's), where !� t&s

denotes perturbations of !t&s . As a consequence of this fact, we have that
E� D(!0 , 't)= ft(!0 ; +0) is bounded for small enough t 's. The convergence
for short times follows by direct comparison of ft(!; +0) and >`=(i, _) \_

(#i, t)!(`) (see Remark 2.2), and use of the Central Limit Theorem for the
independent process corresponding to Ls . Again, we refer to ref. 1 for the
details.

We introduce the upwind discretization of the relaxation system (2.3):

�
�t

\( j, 1, t) +
V
#

(\( j, 1, t) & \( j&1, 1, t))

=G(\( j, 1, t), \( j, &1, t))

�
�t

\( j, &1, t)&
V
#

(\( j+1, &1, t)&\( j, &1, t))

=&G(\( j, 1, t), \( j, &1, t)), ( j, t) # Z#_(0, �) (3.1)

with periodic boundary conditions at j=0, j=#&1. Note the relation
between (3.1) and the equation (2.2) for the average occupation numbers.
We denote by \( j, \1, t | f ) the solution of (3.1) when emphasizing the
dependence on the initial data \( j, \1, 0)= f \( j), j # Z# . Solutions of
(3.1) are defined for all t>0 and are periodic with period #&1, see Section 5.
In a similar way, we define (3.1) on the periodic lattice Z#= .

Also, given n distinct points `k=(ik , _k) # Z#_[&1, 1], we define
`
�
=(`1 ,..., `n) and the vn-functions,

vn
t (`

�
| ')=E' _ `

n

k=1

('̂t(ik , _k)&\(ik , _k , t | '̂))& (3.2)

where E' denotes the expectation conditioned on '0='. A more general
definition of v-functions is needed if we want to prove (2.9) (see refs. 4
and 5), however the technical results below remain essentially unaltered.

730 Katsoulakis and Tzavaras



Lemma 3.1. For each #>0, let ' # X be such that

'(i, _)<#&!, for all (i, _) # Z#_[&1, 1]

Then, for !<;< 1
4 and all n # N, there is a positive constant cn depending

only on n such that for all `
�

and 0<t�#;,

|vn
t (`

�
| ')|<cn#&!n \#

t+
n�4

Proof. For the proof we refer to ref. 1 (Chap. 5), where the same
property is proved for the Carleman system. See also refs. 4 and 5, and
references in De Masi�Presutti, (1) for similar estimates on correlation func-
tions for stochastic cellular automata, the Broadwell model and Glauber�
Kawasaki dynamics. K

Now we define the set of ``good'' realizations of the process '. , i.e., the
ones that are close to the discretized equations (3.1) in a suitable metric
defined below. First, let P#

t((i, _), ( j, _)) or P#
t(i, j; _) for simplicity, be the

Green's function associated with the discrete part of (3.1), i.e., the probabil-
ity a particle at the site i # Z# with velocity _ lands after time t to the site
j # Z# keeping the same velocity. We define the seminorm

& f &#=sup
i } :

( j, _$)

P#1�4(i, j; _$) f ('( j, _$)) } (3.3)

where f # L�(X ).
The choice t=#1�4 in the definition of the seminorm is not the only

one possible. Notice that by such a choice, the main contribution of
P#1�4(i, j; _) is on the sites j in an interval centered at i&_#&1#1�4 with
length approximately #&3�8=(#&1#1�4)1�2. Thus the seminorm is an average
over a mesoscopic interval of size #&3�8 (since 3�8<1), and is sufficient to
suppress the local fluctuations of 't in a rough analogy to a law of large
numbers.

Let [tk]m
k=1 be a partition of [0, T ] with mesh tk+1&tk=h and

define Hm, h as the set of all configurations '. satisfying the following
properties:

(i) '̂(k)<#&!

{ (ii) &'̂(0)( } )&\0( } )&#<#% (3.4)

(iii) &'̂(k)( } )&\( } , h | '̂(k&1))&#�#%, k=1,..., m
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where '̂tk
='̂ (k) and the parameters %, h, ! will be determined later. Then,

Chebyshev's inequality, Lemma 3.1 and the decay estimate P#
t(i, j; _)=

O(=1�2t&1�2) on the Green's function give the following (see ref. 1 for a
similar proof ):

Lemma 3.2. Let the initial measure of the process be a product
Poisson measure +#

0 satisfying (2.8) and let

!<;<%< 1
4 (3.5)

For any }>0, there exists a positive constant c} depending on }, ! and %
such that for any #>0 and mesh tk+1&tk=h=#; we have

P+#
0
(Hm, h)>1&c}#}

4. PROOFS OF THEOREMS 2.1 AND 2.2

We first present the proof of Theorem 2.2; the proof of Theorem 2.1
follows along the same lines but it is simpler, since it is not necessary to
work on long time intervals of size =&1.

Consider the process '̂. and the semi-discrete scheme (3.1) on the peri-
odic lattice Z#= (note that Lemmas 3.1�3.2 remain true if Z# is replaced by
Z#= . For simplicity of notation we write from now on ' instead of '̂ and we
will return to the original notations at the end of the section. Recall that
'̂ is just a rescaling of ' (see Section 2). In the proof of Theorem 2.1
(respectively Theorem 2.2), we denote by \(i, _, t) be the solution of (3.1)
defined on Z# (resp. Z#=) and emanating from data \\

0 (#i) (resp. \\
0 (=#i)).

We use the notation \(i, _, t | f ) for solutions of (3.1) emanating from data
f \. Finally, \_(x, t) with _=\1 will stand for solutions of the relaxation
system (2.3) (or (2.5)) defined on [0, 1].

Lemma 4.1. Let Hm, h be the set of realizations defined in Sec-
tion 3 with corresponding partition mesh,

tk+1&tk=h=#;, 1�k�m (4.1)

and t0=0 and tm={. If the parameter ! satisfies, in addition to (3.5),

!�
1

4l
(4.2)

where l is the positive integer arising in the definition of the generator Lc ,
then for any { # [0, T=&1],
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#= :
i # Z#=

|\(i, _, h | '(k))&\(i, _, tk+1)|

�#= :
i # Z#=

|\(i, _, h | '(k&1))&\(i, _, tk)|+O(#%+#1�4&!l)

Proof. First observe that, for any (i, _) # Z#=_[&1, 1],

\(i, _, h | '(k))&\(i, _, tk+1)=\(i, _, h&#1�4 | \( } , #1�4 | '(k)))&\(i, _, tk+1)

(4.3)

Using the variation of parameters formula, we obtain

\(i, _, #1�4 | '(k))

=T #
#1�4 '(k)+|

#1�4

0
T #

#1�4&s G(\( } , 1, s | '(k)), \( } , &1, s | '(k))) ds

where T #
t the semigroup associated with the kernel P#

t(i, j; _).
Recall that G(w, z)=z& g(w)=z&lwl; since '. # Hm, h , and due to

(4.2) and Theorem 5.1(ii), we obtain that

|
#1�4

0
T #

#1�4&sG(\( } , 1, s | '(k)), \( } , &1, s | '(k))) ds=O(#1�4&!l) (4.4)

where O( } ) depends only on l. Therefore by (3.4)(iii),

\(i, _, #1�4 | '(k))=T #
#1�4 \( } , _, h | '(k&1))+O(#%+#1�4&!l)

=\(i, _, #1�4 | \( } , _, h | '(k&1)))+O(#%+#1�4&!l) (4.5)

By Theorem 5.1(i) we have, after summing (4.3) over all i # Z#= , multiplying
with the lattice size #=, and using (4.5),

#= :
i # Z#=

|\(i, _, h | '(k))&\(i, _, tk+1)|

�#= :
i # Z#=

|\(i, _, #1�4 | '(k))&\(i, _, tk+#1�4)|

=#= :
i # Z#=

|\(i, _, #1�4 | \( } , _, h | '(k&1)))&\(i, _, tk+#1�4)|

+O(#%+#1�4&!l)

�#= :
i # Z#=

|\(i, _, h | '(k&1))&\(i, _, tk)|+O(#%+#1�4&!l)
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Lemma 4.2. Under the assumptions of Lemmata 3.2 and 4.1 we
have that for {=mh # [0, T=&1], and '. # Hm, h :

(i)

#= :
i # Z#=

|\(i, _, h | '(m&1))&\(i, _, {)|�T=&1h&1O(#%+#1�4&!l)

(ii) There is a positive constant c such that

0�\(i, 1, h | '(m&1))�c+L

0�\(i, &1, h | '(m&1))�g(c+L)

where g(w)=lwl and L=T=&1h&1O(#%+#1�4&!l).

Proof. (i) Let {>0 be fixed, { # [0, T=&1]. We divide [0, {] in m
subintervals as in the statement of Lemma 4.1. Note also that working as
in Lemma 4.1, (3.4) implies that

\(i, _, #1�4 | '0)=T #
#1�4 \0+O(#%+#1�4&!l)

=\(i, _, #1�4)+O(#%+#1�4&!l) (4.6)

therefore, by Theorem 5.1(i),

#= :
i # Z#=

|\(i, _, h | '0)&\(i, _, h)|=O(#%+#1�4&!l)

By iteration and using Lemma 4.1, we obtain that

#= :
i # Z#=

|\(i, _, h | '(m&1))&\(i, _, tm)|�mO(#%+#1�4&!l)

Since tm=hm={�T=&1, we conclude

#= :
i # Z#=

|\(i, _, h | '(m&1))&\(i, _, {)|�T=&1h&1O(#%+#1�4&!l)

(ii) The left hand inequalities follow from the positivity of '. and
(5.7) in Theorem 5.1. Select c so that g$(w)�1 for w�c, and \+

0 �c,
\&

0 �g(c) are fulfilled. Then

g(w)+a�g(w+a) for w�c and a>0
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We set l0=O(#%+#1�4&!l), as in (4.5) and (4.6), and proceed to prove
recursively:

\(i, 1, h | '(m&1))�c+ml0

\(i, &1, h | '(m&1))�g(c+ml0)

Equation (4.6) and Theorem 5.1(ii) imply the result for m=1. Similarly,
(4.5) and Theorem 5.1(ii) imply the result for any m. K

We now turn towards the proof of Theorem 2.2:

Proof of Theorem 2.2. Let {>0 be fixed, { # [0, T=&1]. We divide
[0, {] in m subintervals as in the statement of Lemmata 4.1 and 4.2. We
set

===(#)=#r and h=h(#)=#; (4.7)

where r, ; will be chosen in the course of the proof.
As in the definition of the vn-functions in (3.2), we pick n distinct

points ik # Z#= , k=1,..., n. Then,

E+#
0 _ `

n

k=1

['{(ik , 1)+'{(ik , &1)]& `
n

k=1

[\(ik , 1, {)+\(ik , &1, {)]&
=(I )+(II )+(III )+(IV ) (4.8)

where

(I )=E+#
0
(1&/Hm, h

) `
n

k=1

('{(ik , 1)+'{(ik , &1))

(II )=E+#
0
/Hm, h _ `

n

k=1

('{(ik , 1)+'{(ik , &1))

& `
n

k=1

(\(ik , 1, h | '(m&1))+\(ik , &1, h | '(m&1)))&
(III )=E+#

0
/Hm, h _ `

n

k=1

(\(ik , 1, h | ' (m&1))+\(ik , &1, h | '(m&1)))

& `
n

k=1

(\(ik , 1, {)+\(ik , &1, {))&
(IV )=&E+#

0
(1&/Hm, h

) _ `
n

k=1

(\(ik , 1, {)+\(ik , &1, {))&
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Since \( } , \1, {) is bounded in L� (cf. Theorem 5.1(ii)), Lemma 3.2 yields
that

(IV )=O(#}) (4.9)

where } can be chosen arbitrarily large and O( } ) depends on the L�

bounds of \( } , \1, {) and the constant c} in Lemma 3.2.
Furthermore, we can rewrite the term (II),

(II)=E+#
0
/Hm, h

E'(m&1) _ `
n

k=1

('{(ik , 1)+'{(ik , &1))

& `
n

k=1

(\(ik , 1, h | '(m&1))+\(ik , &1, h | '(m&1)))&
We now substitute '{(ik , \1)=w{(ik , \1)+\(ik , \1, h | '(m&1)); recall
that for any l=1,..., 2n, the correlation functions are defined as v l

h(`
�

| ')=
E' > l

k=1 w{(ik , _k), where `
�
=((i1 , _1),..., (il , _ l)) . Using Lemma 3.1 we

get, after some rearrangements, that the term (II ) is dominated by a linear
combination of vl-functions, l=1,..., 2n and finally obtain:

(II )=O(#1�4&!h&1�4) (4.10)

where O( } ) depends on the constants cl , l=1,..., 2n in Lemma 3.1 and the
L� bounds of \( } , \1, {) and \( } , \1, h | '(m&1)); notice that the latter
are also bounded by Lemma 4.2(ii) and the choice of = and h in (4.13),
guaranteeing that T=&1h&1O(#%+#1�4&!l) vanishes as # � 0.

We now turn to the term (III ). For suitable positive constants lk ,
k=1,..., n depending on L� bounds of \( } , \1, {) and \( } , \1, h | '(m&1)),
we have,

(III )�E+#
0
/Hm, h

:
n

k=1

lk[\(ik , _k , h | '(m&1))&\(ik , _k , {)]

therefore by Lemma 4.2,

(#=)n :
i1{ } } } {in

|(III )|�C#= :
i # Z#=

|\(i, _ i , h | '(m&1))&\(i, _i , {)|

=T=&1h&1O(#%+#1�4&!l) (4.11)

where C=n maxk lk .
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We conclude with the term (I ). By Lemma 3.2 and the Cauchy�
Schwarz inequality we have that for any } # N,

}E+#
0
(1&/Hm, h

) `
n

k=1

('{(ik , 1)+'{(ik , &1)) }
2

�c} #}E+#
0 \ `

n

k=1

'{(ik , 1)+'{(ik , &1)+
2

�c} #}E+#
0 \ :

n

k=1

'{(ik , 1)+'{(ik , &1)+
2n

�c} #}E+#
0 \ :

i # Z#=

'{(i, 1)+'{(i, &1)+
2n

Since the total number of particles in the system is conserved, then the last
term in the previous relation is bounded by

c}#}E+#
0 \ :

i # Z#=

'0(i, 1)+'0(i, &1)+
2n

Now notice that �i # Z#=
'0(i, 1)+'0(i, &1) is Poisson with mean

�i # Z#=
\+

0 (i)+\&
0 (i), which in turn implies that its 2n th moment is bounded

by a linear combination of the 2l powers of the mean, l=1,..., n. In view of
the boundedness of the initial data of (3.1) in L1, we have

E+#
0 \ :

i # Z#=

'0(i, 1)+'0(i, &1)+
2n

�C#&2n=&2n

for a constant C depending on the L1 norms of \\
0 . Thus,

(I )=O(#}�2&n=&n) (4.12)

where O( } ) depends on c} and the L1 norm of the initial data. Note that
the right hand side vanishes for } large enough and = polynomial in #.

Henceforth, we return to the notation of Section 2��recall that
throughout Section 4 we used ' instead of '̂. Putting together (4.9)�(4.12),
we obtain

(#=)n :
i1{ } } } {in

}E+#
0

`
n

k=1

('̂{(ik , 1)+'̂{(ik , &1))

& `
n

k=1

(\(ik , 1, {)+\(ik , &1, {)) }
=O(#}�2&n=&n+#1�4&!h&1�4+(#%+#1�4&!l) =&1h&1+#}) (4.13)
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where } can be chosen arbitrarily large. Set ==#r, h=#;. We now pick r,
;, ! such that (4.1), (4.2) and the conditions of Lemma 3.2 are satisfied,
and the exponents in (4.13) are positive, i.e.

!<;<%<
1
4

!<
1

4l (4.14)
;<1&4!

r+;<min \%,
1
4

&!l+
The pair (\(i, 1, t=&1), \(i, &1, t=&1)), i # Z#= , t # [0, T ], solves (5.1a)

with # replaced by #=. By Theorem 5.7, we then have

sup
[0, T=&1]

#= :
i # Z#=

|(\(i, 1, {)+\(i, &1, {))&u(#= i, {=)|=O(- =+#=) (4.15)

We conclude by combining (4.13) and (4.15). K

Finally, we turn towards the proof of Theorem 2.1:

Proof of Theorem 2.1. The proof proceeds along the lines of
Theorem 2.2, when we set ==1: we first obtain (4.13), with ==1,

#n :
`
�
# M

n
#
}E+#

0
`
n

k=1

'̂t(ik , _k)& `
n

k=1

\(ik , _k , t) }
=O(#}�2&n+#1�4&!h&1�4+(#%+#1�4&!l) h&1+#}) (4.16)

Again we set h=#; and pick ;, ! such that (4.1), (4.2) and the conditions
of Lemma 3.2 are satisfied and the exponents in (4.16) are positive:

!<;<%<
1
4

!<
1

4l
(4.17)

;<min \1&4!, %,
1
4

&!l+
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By Theorem 5.6(a), we have

sup
[0, T ]

# :
i # Z#

|(\(i, \1, {)&\\(#i, {)|=O(- #) (4.18)

where (\+ , \&) solve (2.3). We conclude by combining (4.16) and
(4.18). K

5. SEMI-DISCRETE RELAXATION SCHEMES

In this section, we consider an upwind space-discretization of the
relaxation system (2.5). To simplify the forrest of indices and superscripts,
we replace (\+, \&) with (w, z). The discretization then reads:

�
�t

wj +
V
#

[wj&wj&1]=
1
=

G(wj , zj )

(5.1a)
�
�t

zj &
V
#

[zj+1&zj]=&
1
=

G(wj , zj )

with initial data

wj (0)=wj0 , z j (0)=zj0

where ( j, t) # Z_(0, �) and #>0 is the (uniform) grid size. Solutions of
(5.1a) satisfy the conservation law

�
�t

(wj+zj )+V
wj&wj&1

#
&V

zj+1&z j

#
=0 (5.1b)

We assume that G # C 1(R2; R) satisfies the properties: G(0, 0)=0,

(A) G( } , z) is strictly decreasing, G(w, } ) is strictly increasing

(B) The zero level set of the graph of G is a C 1 curve (w, g(w)),
with g strictly increasing and g(\�)= \�.

(C) Given Ra, b, there is c=c(a, b)>0 such that

G(w, z)( g&1(z)&w)�c[z&g(w)]2, for w, z # Ra, b
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where Ra, b :=[a, b]_[ g(a), g(b)]. At times (C) is replaced by the
hypothesis:

(C$) Given Ra, b, there is c=c(a, b)>0 such that

|G(w, z)|�c |z&g(w)| and Gz(w, z)&Gw(w, z)�c,

for w, z # Ra, b

Both (C) and (C$) follow from the assumption Gz(w, z)�r for some r>0.
All hypotheses are satisfied for G(w, z)=z& g(w) with g strictly increasing.

In Sections 5.1 and 5.2, we develop an existence theory for the semi-
discrete scheme (5.1). In Sections 5.3, 5.4 and 5.5, we investigate the con-
vergence to the relaxation system (2.5) as = is kept fixed and # � 0, and the
convergence to the scalar conservation law (2.7) as both # � 0 and = � 0.
The theory proceeds along the lines of ref. 2; the point is that upwind space
discretization preserves the estimate structure of the relaxation system (2.5).

5.1. Preliminaries

In the sequel, ?& denotes the space of bounded sequences f =[ fj ] j # Z

that are periodic with integer period M=&&1, that is f j+M= f j for j # Z.
Also, l p will stand for the space of p-summable sequences f =[ fj ]j # Z if
1�p<�, and l � for the space of bounded sequences with the usual
norms; recall that l 1/l p/l �. We pursue two parallel existence theories:
(i) for initial data w0 , z0 in l 1, and (ii) for initial data w0 , z0 in ?& that are
periodic sequences with period M.

If we set w(t)=[wj (t)]j # Z , z(t)=[zj (t)]j # Z , then solutions of (5.1)
may be visualized as functions w, z: [0, T ] � RZ. (The dependence of w
and z on # and = will be suppressed.) For local existence, (5.1) is viewed
as an infinite system of ordinary differential equations indexed by j # Z.
One can check that the right hand side (consisting of the convective and
the reacting terms) is a locally Lipshitz map from l � to l �, and that the
standard existence theory for ordinary differential equations can be
extended to this case, and yields:

(a) If w0 , z0 # l � then there exists a unique solution w, z #
C([0, T ]; l �) of (5.1) for some T small.

(b) If T* is the maximal time of existence then lim supt � T* &w(t)&�

+&z(t)&�=�.

(c) If w0 , z0 # ?& then the solution w(t), z(t) # ?& for each t.
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The time regularity of this solution depends on the smoothness of G. If G
is Lipshitz then w, z # C1([0, T ]; l �), if G is more regular then the time-
regularity of w, z also improves. Finally, if there is an a-priori bound for
(w(t), z(t)) in l � then (b) implies that the maximal time of existence
T*=�.

Given a function v: Z [ R, we define for j # Z the backward and
forward differencing operators

$bvj=
vj&vj&1

#
and $f vj=

vj+1&vj

#
(5.2)

The operators $b and $f satisfy the relations

$b |v j |�(sgn vj ) $bvj , &$f |vj |�&(sgn vj ) $f vj (5.3)

and, for any convex, twice differentiable function 9(v),

$b 9(vj )�9$(vj ) $bvj and &$f 9(vj )�&9$(vj ) $f vj (5.4)

Property (5.3) can be established by direct computation, while (5.4) follows
from an application of the Taylor theorem

9(b)=9(a)+9$(a)(b&a)+_|
1

0
|

t

0
9"(sb+(1&s) a) ds dt& (b&a)2

to the convex function 9. In fact, if 9 is strictly convex, with 9"(v)�c>0,
then we have the stronger variants of (5.4)

$b9(vj )+
#c
2

($b vj )
2�9$(vj ) $bvj

(5.5)

&$f 9(vj )+
#c
2

($f vj )
2� &9$(vj ) $f vj

5.2. Global Existence Theory and Estimates

This section carries the existence theory for the system (5.1).

Theorem 5.1. Let G satisfy Hypotheses (A-B) and w0 , z0 # l �.
There exists a unique globally defined solution (w, z) of (5.1) such that

(a) if w0 , z0 # l 1 then (w, z) # C([0, T ]; l 1), for any T>0,

(b) if w0 , z0 # ?& then (w, z) # C([0, T ]; l �), T>0, and w(t), z(t)
take values in ?& .
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In either case (a) or (b) the following hold:

(i) If (w, z), (w� , z� ) are two solutions of (5.1) then, for t>0,

:
j # J

|wj (t)&w� j (t)|+|zj (t)&z� j (t)|� :
j # J

|wj0&w� j0 |+|zj0&z� j0 | (5.6)

(ii) If (wj0 , z j0) # [a, b]_[ g(a), g(b)] for j # Z, then

(wj (t), zj (t)) # Ra, b :=[a, b]_[ g(a), g(b)] for j # Z, t>0 (5.7)

i.e., the region Ra, b is positively invariant.

(iii) For t>0, we have the Total Variation Diminishing (TVD)
property,

:
j # J

|wj (t)&wj&1(t)|+|zj (t)&zj&1(t)|� :
j # J

|wj0&w( j&1) 0 |+|zj0&z( j&1) 0 |

(5.8)

The sums in (5.6) and (5.8) are over J=Z for the case (a) of l 1 initial data,
and over one period, J=Z& , for the case (b) of periodic initial data.

Proof. Let (w, z) be the solution of (5.1) defined on a maximal inter-
val of existence [0, T*), and let T<T*. Since w, z # C([0, T ]; l �), it
follows that for some r>0, |wj (t)|�r and |zj (t)|�r for j # Z and
t # [0, T ].

First we consider l 1 initial data and prove (a) and (i)�(iii). We begin
by showing that w(t), z(t) # l 1 for t # [0, T ]. In the ball Br , we have
|G(w, z)|�C( |w|+|z| ). Then, a rough estimation on (5.1) gives

�
�t

:
n

j=&n

( |wj |+|zj | )�
2V
#

:
n+1

j=&n&1

( |wj |+|zj | )+
2C
=

:
n

j=&n

( |wj |+|zj | )

and the function

fn(t)= :
n

j=&n

|wj (t)|+|zj (t)|

satisfies the recursive relation

fn(t)�a+b |
t

0
fn+1(s) ds

(5.9)
fn(t)�Mn
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with b=((2V�#)+(2C�=)), Mn=4nr, and a=&w0&1+&z0&1 . As the following
Lemma shows, (5.9) yields an exponential bound on fn(t):

Lemma 5.2. Suppose the functions fn(t)�0, n=1, 2,..., satisfy, for
some positive constants a, b, T and Mn , the recursive relations (5.9).
If [(bT )n Mn+k �n!] � 0 as n � � for each k=1, 2,..., then

fn(t)�aebt , for n=1, 2,... and 0�t�T (5.10)

Proof of Lemma 5.2. Iterating (5.9) we obtain, after k iterations,

fn(t)�a \1+bt+ } } } +
bktk

k! ++
bk+1tk+1

(k+1)!
Mn+k+1

Passing to the limit k � �, yields (5.10). K

For the case at hand, Lemma 5.2, in conjunction with the bound
Mn�2nr, implies

fn(t)= :
n

j=&n

|wj (t)|+|zj (t)|�(&w0&1+&z0&1) ebt

w(t), z(t) # l 1 for 0�t�T, and w\n(t) � 0, z\n(t) � 0 as n � �.
Let now (w, z) and (w� , z� ) be two solutions of (5.1). They satisfy the

equations

�
�t

(wj&w� j )+V$b(wj&w� j )=
1
=

[G(wj , zj )&G(w� j , z� j )]

�
�t

(zj&z� j )&V$f (zj&z� j )=&
1
=

[G(wj , zj )&G(w� j , z� j )]

and the conservation law

�
�t

(wj&w� j )+(zj&z� j )+V$b(wj&w� j )&V$f (zj&z� j )=0

We multiply the former equations by sgn(wj&w� j ), sgn(zj&z� j ) respectively,
and use (5.3) and Hypothesis (A) to obtain:

�
�t

( |wj&w� j |+|zj&z� j | )+V$b |wj&w� j |&V$f |zj&z� j |

�
1
=

[sgn(wj&w� j )&sgn(zj&z� j )[G(wj , zj )&G(w� j , z� j )]�0 (5.11)
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In turn, this yields

�
�t \ :

n

j=&n

|wj&w� j |+|zj&z� j |+
+

V
#

[|wn&w� n |&|w&n&1&w� &n&1 |+|z&n&z� &n |&|zn+1&z� n+1 |]�0

Letting n � �, we deduce that (w, z), (w� , z� ) satisfy

:
j # Z

|wj (t)&w� j (t)|+|zj (t)&z� j (t)|� :
j # Z

|w j0&w� j0 |+|zj0&z� j0 | (5.12)

and (5.5) follows for w0 , z0 # l 1.
To see (ii), note that the conservation law gives

:
j # Z

(wj (t)&w� j (t))+(z j (t)&z� j (t))= :
j # Z

(wj0&w� j0)+(zj0&z� j0) (5.13)

which, together with (5.12), implies

:
j # Z

(w j (t)&w� j (t))++(z j (t)&z� j (t))+� :
j # Z

(wj0&w� j0)++(zj0&z� j0)+

(5.14)

Using the the stationary solutions w� j (t)=}, z� j (t)= g(}), }=a, b, as com-
parison functions in (5.14), leads to (ii). The invariant regions (5.7), in con-
junction with Hypothesis (B), imply that solutions of (5.1) emanating from
l � data stay uniformly in j in an invariant set, and thus solutions of (5.1)
exist globally in time. The Total Variation Diminishing property (iii) is an
immediate consequence of (i).

If w0 , z0 are in ?& , the solutions w(t) and z(t) take values in ?&

for t>0. When summing (5.11) over a set of indices Z& with length one
period M, the contributions at the endpoints cancel and we obtain

:
j # Z&

|wj (t)&w� j (t)|+|z j (t)&z� j (t)|� :
j # Z&

|wj (0)&w� j (0)|+|z j (0)&z� j (0)|

The rest of the proof proceeds along similar lines. K

The semidiscrete scheme (5.1) satisfies two variants of discrete,
Kruzhkov-type inequalities. Relation (5.16) is a discretized version of the
Kruzhkov entropy conditions for the conservation law (2.7). Relation (5.15)
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is a semidiscrete version of the entropy inequalities for the relaxation
system (2.5); its importance is seen in Theorem A.2 of the Appendix.

Corollary 5.3. Under the Hypotheses (A-B), solutions of (5.1)
satisfy:

(i) For }, * # R, j # Z and t>0,

�t( |wj&}|+|zj&*| )+V$b |wj&}|&V$f |zj&*| )

�
1
=

G(wj , zj ) (sgn(wj&})&sgn(zj&*)) (5.15)

(ii) For } # R, j # Z and t>0

�t( |wj&}|+|zj& g(})| )+V$b |wj&}|&V$f |zj& g(})| )�0 (5.16)

Proof. For }, * fixed, (5.1a) and (5.2) give

�t |wj&}|+V$b |wj&}|�
1
=

G(wj , zj ) sgn(wj&})

�t |zj&*|&V$f |zj&*|� &
1
=

G(wj , zj ) sgn(zj&*)

whence (5.15) follows. Relation (5.16) is a consequence of (5.11), when
(w� , z� ) is selected an equilibrium solution (}, g(})). K

5.3. Distance from Equilibrium

For the remainder of the section, we present the statements for data
w0 , z0 # ?& . Analogous statements hold for l 1 data with minor modifications.

There are two mechanisms for controlling the distance of a solution
(w, z) from the line of equilibria (}, g(})). The first is based on an
``entropy'' estimate in conjunction with Hypothesis (C): Consider the
strictly convex functions 8(w)= 1

2w2 and 9(z)=�z
0 g&1(!) d!. We multiply

the first equation in (5.1a) by wj , the second by 9$(z j ), and use (5.4) to
arrive at

�
�t \

1
2

w2
j +9(zj )++V$b

1
2

w2
j &V$f 9(zj )+

1
=

(g&1(zj )&wj ) G(wj , zj )�0
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In turn, the periodicity of (w(t), z(t)) and Hypothesis (C) imply

:
j # Z&

# \1
2

w2
j (t)+9(zj (t)++

c
= |

t

0
# :

j # Z&

(zj& g(wj ))2 ds

� :
j # Z&

# \1
2

w2
j0+9(zj0)+ (5.17)

The second way for controlling the distance from equilibrium is based
on a Lyapunov function for the associated system of ordinary differential
equations.

Lemma 5.4. Under Hypotheses (A), (B) and (C$), solutions of
(5.1) satisfy

1
=

:
j # Z&

# |G(wj (t), zj (t))|

�
1
=

e&(c�=) t :
j # Z&

#G(wj0 , zj0)+
C
c

:
j # Z&

|w j0&w( j&1) 0 |+|z( j&1) 0&zj0 |

(5.18)

where c is the constant in Hypothesis (C$), and C depends on the invariant
domain Ra, b and V.

Proof. The function Gj=G(wj , zj ) satisfies the equation

�tGj+
1
=

(Gz(wj , zj )&Gw(wj , zj )) Gj=&VGw(wj , zj ) $bwj+VGz(wj , zj ) $f zj

Using (C$), (5.7) and the TVD property (5.8) of the scheme, we see that

d
dt

:
j # Z&

# |Gj |+
c
=

:
j # Z&

# |Gj |�C :
j # Z&

# |$bwj |+# |$f z j |

�C :
j # Z&

|wj0&w( j&1) 0 |+ |z( j&1) 0&zj0 |

where C depends on the invariant region Ra, b and V. Then (5.18) follows
from integrating the inequality. K
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5.4. Compactness and Convergence Properties of
Semi-Discrete Schemes

We now consider the relation between solutions of the semidiscrete
scheme (5.1) and 1-periodic solutions of the relaxation system (2.5) or the
conservation law (2.7). As we are interested in constructing 1-periodic solu-
tions, the number of grid points per interval I, of length one period, is
M=#&1 with M an integer. The grid size # is taken uniform and Z&=Z# .

We assume that the data [(wj0 , zj0)] j # Z of the semi-discrete scheme
are in ?# and satisfy

:
j # Z#

# |wj0 |+# |zj0 |�C, (wj0 , zj0) # Ra, b for j # Z (h1)

:
j # Z#

|w( j+1) 0&wj0 |+|z( j+1) 0&zj0 |�K (h2)

for some constants C, K and a, b independent of # and =. To see the
relevance of these assumptions, note that if w=

0(x), z=
0(x) are stable in

L1 & L�(I) and 1-periodic, then w=
0 , z =

0 can be approximated in L1(I ) by
the piecewise constant approximants

w#, =
0 = :

j # Z

wj0/Ij
(x), z#, =

0 = :
j # Z

z j0/Ij
(x) (5.19)

where Ij=[ j#, ( j+1) #), /Ij
is the characteristic function of the interval Ij ,

and the interpolants (wj0 , zj0) satisfy (h1). If w=
0(x), z=

0(x) are also stable in
BV(I ) then the interpolants satisfy (h1) and (h2).

Let (wj (t), zj (t)), j # Z, be the corresponding solution of (5.1) and
define the approximate solution (w#, =, z#, =) of (2.5), for (x, t) # R_[0, �),
by piecewise constant approximation

w#, =(x, t) := :
j # Z

wj (t) /Ij
(x), z#, =(x, t) := :

j # Z

zj (t) /Ij
(x) (5.20)

Then (w#, =, z#, =) is 1-periodic in x, uniformly bounded

(w#, =, z#, =) # Ra, b for x # R, t>0 (5.21)

and its total variation measure is

|
I

|Dxw#, =| (x, t)= :
j # Z#

|wj+1(t)&wj (t)|

(5.22)

|
I

|Dxz#, =| (x, t)= :
j # Z#

|zj+1(t)&zj (t)|
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Theorem 5.5. Let [wj0 , zj0] j # Z satisfy (h1&h2).

(a) Assume that G satisfies (A-B). Then [w#, =], [z#, =] are precom-
pact in L1(I_[0, T ]), when = is fixed and # � 0. Along a subsequence
(w#n , = , z#n , =) � (w=, z=) in L1(I_[0, T ]), where (w=, z=) is a 1-periodic solu-
tion of the relaxation system (2.5).

(b) Assume that G satisfies (A-B) and (C) and let u#, ==w#, =+z#, =.
Then, the family [u#, =] is precompact in L1(I_[0, T ]) as = � 0 and # � 0.
Along a subsequence u#n , =n � u=w+ g(w) in L1(I_[0, T ]), where w is a
1-periodic entropy solution of the conservation law (2.7).

Proof. First we show (a). It follows from (5.8), (5.22) and (h2) that,
for h # R,

|
I

|w#, =(x+h, t)&w#, =(x, t)| dx�|h| |
I

|Dxw#, =| (x, t)�K |h|

For k>0, (5.20) and (5.1) imply

|
I

|w#, =(x, t+k)&w#, =(x, t)| dx

= :
j # Z#

# |w j (t+k)&w j (t)|

� :
j # Z#

|
t+k

t _V |wj (s)&wj&1(s)|+
1
=

# |G(wj (s), zj (s))|& ds

�Vk :
j # Z#

|wj0&w( j&1) 0 |+
C
=

k :
j # Z#

#=\K+
C
= + k

Similar statements hold for the functions z#, =. We conclude that [w#, =] and
[z#, =] are precompact in L1 as # � 0 and = is kept fixed.

Consider now a subsequence #n � 0 such that w#n , = � w=, z#n , = � z= in
L1(I_[0, T ]) and a.e., and w#n , =( } , 0) � w=( } , 0), z#n , =( } , 0) � z=( } , 0) in
L1(I ). Using (5.1a), we see that (w=, z=) is a 1-periodic function in x that
satisfies (2.5) in D$ and emanates from the data (w=( } , 0), z=( } , 0)).

We turn to (b). Observe that u#, ==w#, =+z#, = satisfies

|
I

|u#, =(x+h, t)&u#, =(x, t)| dx�K |h|
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for h # R. For k>0 a time increment using the equation (5.1b) we deduce

|
I

|u#, =(x, t+k)&u#, =(x, t)| dx

=# :
j # Z#

|(wj+zj )(t+k)&(wj+zj )(t)|

�V |
t+k

t
:

j # Z#

|wj (s)&wj&1(s)|+|zj+1(s)&z j (s)| ds�VKk

Hence, [u#, =] is precompact in L1 as = � 0 and # � 0.
Next, (5.20), (C), (5.17) and (h1) together imply

|
T

0
|

I
|z#, =& g(w#, =)|2 dx dt=|

T

0
:

j # Z#

#(zj& g(wj ))2 ds�C=

Let . # C �
c (R_[0, �)) be a test function. A straightforward calculation,

using (5.1) and (5.20), shows that

||
R_[0, �)

.t(w#, =+z#, =)&V
.(x, t)&.(x+#, t)

#
w#, =

+V
.(x&#, t)&.(x, t)

#
z#, = dx dt

+|
R

.(x, 0) u#, =(x, 0) dx=0

Consider a subsequence #n , =n � 0, such that u#n , =n � u in L1(I_[0, T ])
and a.e., u#n , =n( } , 0)=w#n , =n( } , 0)+z#n , =n( } , 0) � u( } , 0) in L1(I ) and e#n , =n=
z#n , =n& g(w#n , =n) � 0 a.e. Since g is strictly increasing, there is w such that
w+ g(w)=u, w#n , =n � w a.e., and z#n , =n= g(w#n , =n)+e#n , =n � g(w) a.e.
Passing to the limit #n , =n � 0, we conclude that u=w+ g(w) is a 1-peri-
odic weak solution of (2.7) emanating from the initial data u( } , 0).
A similar argument, starting from (5.16), shows that w satisfies, for } # R,

�t( |w&}|+| g(w)& g(})| )+V�x( |w&}|&| g(w)& g(})| )�0

in D$. K

5.5. Error Estimates

In this section we use the results of the Appendix, to obtain error
estimates for the limit processes: (i) = fixed and # � 0, and (ii) = � 0 and
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# � 0. We employ the notation: (w=, z=) for solutions of the relaxation
system (2.5) associated with the data (w=

0 , z=
0); u or w, u=w+ g(w), for the

solution of the conservation law (2.7) associated with the initial data
u0=w0+ g(w0); finally, (w#, =, z#, =) for the approximate solution, defined in
(5.20), associated with the piecewise constant data (w#, =

0 , z#, =
0 ) in (5.19).

Theorem 5.6. Let G satisfy (A-B) and suppose that (w=
0 , z=

0) #
BV(I ).

(a) If (w#, =
0 , z#, =

0 ) satisfy (h1&h2), then for any T>0 there is a con-
stant C� , depending on T, =, the bounds in Hypotheses (h1&h2) and the
BV-norm of (w=

0 , z=
0), such that

&w#, =( } , t)&w=( } , t)&L1(I )+&z#, =( } , t)&z=( } , t)&L1(I )

�&w#, =
0 &w=

0 &L1(I )+&z#, =
0 &z=

0&L1(I )+C� #1�2 (5.23a)

for 0�t�T, as # � 0.

(b) If (w#, =
0 , z#, =

0 ) satisfy (h1), then for any T>0 there is C� , depending
on T, =, the bound in hypothesis (h1) and the BV-norm of (w=

0 , z=
0), such

that

&w#, =( } , t)&w=( } , t)&L1(I )+&z#, =( } , t)&z=( } , t)&L1(I )

�&w#, =
0 &w=

0 &L1+&z#, =
0 &z =

0&L1+C� #1�3 (5.23b)

for 0�t�T, as # � 0.

We note that in part (b) of the previous Theorem, the hypothesis
w=

0 , z=
0 # BV(I ) refers to the approximated solution of the relaxation system

(2.5), while the assumption (h1) is on the data of the semidiscrete
approximating scheme (5.1). As noted at the end of the proof of Theo-
rem 5.6(b), the hypothesis w=

0 , z=
0 # BV(I ) can be replaced by a weaker

hypothesis on the L1-modulus of continuity of w=
0 , z=

0 at the expense of
obtaining a slower rate of convergence than #1�3. In this case we may also
obtain a weaker version of Theorem 2.1.

The next theorem provides error estimates for the convergence # � 0,
= � 0 to the conservation law. We assume, without loss of generality in the
BV framework, that g is globally Lipschitz. The data (wj0 , zj0) are assumed
to satisfy

:
j # Z#

# |G(w j0 , zj0)|�C= (h3)
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with C independent of # and =. Then we have:

Theorem 5.7. Let G satisfy (A-B) and (C$), and suppose that
u0 # BV(I ) and (w#, =

0 , z#, =
0 ) satisfy (h1&h3). Then for any T>0 there is a

constant C� , depending on T, the Lipshitz norm of g(w), the bounds
(h1&h3), and the BV-norm of u0 , such that

&u#, =( } , t)&u( } , t)&L1(I )�&u#, =
0 &u0&L1(I )+C� (=+#)1�2 (5.24)

for 0�t�T, as # � 0 and = � 0.

Proof of Theorem 5.6. We first show that (w#, =, z#, =) is an
approximate solution of (2.5), in the sense that (A.11) in the Appendix is
satisfied. Fix } and * # R and T>0. Using (5.20) we compute for
(x, t) # R_[0, T ]

|w#, =&}|= :
j # Z

|wj&}| /Ij
, |z#, =&*|= :

j # Z

|zj&*| /Ij

Then (5.15) implies that (w#, =, z#, =) satisfies, in D$,

S :=�t( |w#, =&}|+|z#, =&*| )+V�x( |w#, =&}|&|z#, =&*| )

&
1
=

G(w#, =, z#, =)(sgn(w#, =&})&sgn(z#, =&*))

= :
j # Z

(�t( |w j&}|+|zj&*| )&G(wj , zj )(sgn(wj&})&sgn(zj&*))) /Ij

+V :
j # Z

(#$b |wj&}|&#$b |zj&*| ) $(x& j#)

�Vfw&Vfz (5.25)

where fw and fz are given by

fw= :
j # Z

$b |wj&}| (#$(x& j#)&/Ij
)

(5.26)

fz= :
j # Z

$b |zj&*| (#$(x& j#)&/Ij
)

and $(x& j#) stands for the delta function at the point j#.
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We proceed to estimate the error terms fw and fz . First, we operate
under the framework of both Hypotheses (h1&h2). Let .(x, t) be a test
function and let aj=$b |wj&}|. Then

( fw , .)= :
j # Z

aj \#.( j#, t)&|
Ij

.( y, t) dy+
=& :

j # Z

aj |
Ij
|

y

j#

�.
�x

(z, t) dz dy=&\Fw ,
�.
�x+

i.e., fw=�xFw in D$. Furthermore, Fw can be viewed as a Radon measure
on I_[0, T ], defined by

(Fw , �)= :
j # Z#

aj |
Ij
|

y

j#
�(z, t) dz dy, for � # C 0(I_[0, T ])

and Fw is estimated in M(I_[0, T ]) by

|(Fw , �)|�
#
2 \ :

j # Z#

|w j (t)&wj&1(t)|+ &�&C0

Under hypotheses (h1&h2), (5.8) implies that

fw=�xFw , with &Fw &Mx, t
�K# (5.27)

and, in a similar fashion,

fz=�xFz , with &Fz&Mx, t
�K# (5.28)

where the constant K in (5.27) and (5.28) is as in (h2).
In summary, (w#, =, z#, =) satisfies

S�V�xFw&V�xFz

where Fw and Fz are bounded in measures as in (5.27)�(5.28). For the
selections R=m any integer, $=2>0, &=0, M=V, and Bt=
B(0, m+M(T&t)+$) we apply Theorem A.2. We set m0 to be the
smallest integer larger than MT+$, and take account of the fact that the
moduli of continuity E t and Ex of the solution (w=, z=) of (2.5) are
estimated by

E t�(m+m0) C1$, Ex�(m+m0) C2 $ (5.29)
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where C1 , C2 depend on the BV-norm of (w=
0 , z=

0), and C1 also depends
on =. Also, that

EH�(m+m0) C3

#
$

where C3 depends on T and K in (5.27)�(5.28). Then Theorem A.2 implies
that, for $>0 and m any integer,

|
I

|w#, =(x, T )&w=(x, T )|+|z#, =(x, T )&z=(x, T )| dx

�\1+
m0

m + |
I

|w#, =(x, 0)&w=(x, 0)|

+|z#, =(x, 0)&z=(x, 0)| dx+C \1+
m0

m +\$+
#
$+

The optimum estimate follows from the selection $=#1�2 and m � � and
leads to (5.23a).

We indicate a second way for treating the errors fw and fz that requires
the weaker hypothesis (h1), but still requires knowledge on the L1-modulus
of continuity for (w=, z=). Let . be a test function and set $b |wj&}|=
(bj&bj&1 �#), where bj=|wj&}|&|}|. Then (5.26) implies

( fw , .)=& :
j # Z

bj&bj&1

# |
Ij
|

y

j#

�.
�x

(z, t) dz dy

=&
1
#

:
j # Z

bj \|Ij
|

y

j#

�.
�x

(z, t) dz dy&|
Ij+1

|
y

( j+1) #

�.
�x

(z, t) dz dy+
=

1
#

:
j # Z

bj |
Ij
|

y

j#
|

z+#

z

�2.
�x2 (w, t) dw dz dy=\Fw ,

�2.
�x2+

i.e., fw=�2
xFw in D$. The error term Fw is viewed as a Radon measure on

I_[0, T ], defined by

(Fw , �)=
1
#

:
j # Z

bj |
Ij
|

y

j#
|

z+#

z
�(w, t) dw dz dy for � # C 0(I_[0, T ])
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and estimated in M(I_[0, T ]) by

|(Fw , �)|�
#2

2 \ :
j # Z#

|bj |+ &�&C0�
#
2 \ :

j # Z#

# |wj (t)|+ &�&C 0

Under hypothesis (h1), (5.6) implies

fw=�2
xFw , with &Fw &Mx, t

�C# (5.30)

and, in a similar fashion,

fz=�2
xFz , with &Fz &Mx, t

�C# (5.31)

Now (w#, =, z#, =) is viewed as an approximate solution, based on the
inequality

S�V�2
xFw&V�2

xFz (5.32)

Applying Theorem A.2 on the domain Bt=B(0, m+M(T&t)+$), with m
any integer and $>0, and using (5.29) and the implication of (A.10)

EL�(m+m0) C4

#
$2

we obtain

|
I

|w#, =(x, T )&w=(x, T )|+|z#, =(x, T )&z=(x, T )| dx

�\1+
m0

m + |
I

|w#, =(x, 0)&w=(x, 0)|

+|z#, =(x, 0)&z=(x, 0)| dx+\1+
m0

m + C \$+
#
$2+

The optimum estimate corresponds to $=#1�3 and m � � and yields
(5.23b). The hypothesis w=

0 , z=
0 # BV(I ) can be replaced in part (b) by a

weaker hypothesis on the L1-modulus of continuity of w =
0 , z =

0 at the expense
of obtaining a slower rate of convergence than #1�3. K
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Proof of Theorem 5.7. Let u#, ==w#, =+z#, =. We show that w#, =

satisfies the approximate entropy inequalities (A.8). Given k # R define
} # R such that k=}+ g(}). Since g is increasing we see that

||#, =&}|+| g(w#, =)& g(})|

=|w#, =&}|+|z#, =& g(})|&J #, =

(5.33)
V |w#, =&}|&V | g(w#, =)& g(})|

=V |w#, =&}|&V |z#, =& g(})|+VJ #, =

where

J #, =(x, t)=|z#, =& g(})|&| g(w#, =)& g(})|
(5.34)

|J #, =(x, t)|�| g(w#, =)&z#, =|

Next, (5.16), (5.25) with *= g(}), and (5.33) imply

L :=�t( |w#, =&}|+| g(w#, =)& g(})| )+V�x( |w#, =&}|&| g(w#, =)& g(})| )

�V�xFw&V�xFz&�tJ #, =+V�xJ #, = (5.35)

where Fw and Fz are estimated as in (5.27)�(5.28) and J #, = is given in
(5.34). On account of Lemma 5.4 and Hypotheses (C$) and (h2), (h3), we
have

sup
t # [0, T ]

|
I

|J #, =| dx� sup
t # [0, T ]

:
j # Z#

#
c

|G(wj (t), zj (t))|

�C :
j # Z#

# |G(wj0 , zj0)|+C= :
j # Z#

|wj0&w( j&1) 0 |

+|z( j+1) 0&zj0 |�C= (5.36)

We now apply Theorem A.1 on the domain Bt=B(0, m+M(T&t)+$)
with m integer and $>0. For u0 # BV(I) the moduli of continuity E t and
Ex of u are estimated by

E t�(m+m0) C$ , Ex�(m+m0) C$
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with C independent of =. Then Theorem A.1, in conjunction with (5.36) and
(A.10), implies that for any $>0 and m integer

|
I

|u#, =(x, T )&u(x, T )| dx�\1+
m0

m + &u#, =
0 (x, 0)&u(x, 0)&L1(I )

+C \1+
m0

m +\$+=+
#+=

$ +
The optimum bound is obtained for $=(#+=)1�2 and m � � and leads to
(5.24). K

APPENDIX. KRUZKHOV ESTIMATES FOR RELAXATION
SYSTEMS

In ref. 2, a class of N+1 semilinear hyperbolic systems is studied, set
in RN_[0, �), describing the dynamics of the state vector (w, Z), with
Z=(z1 ,..., zN):

�tw+U0 } {w=
1
=

:
N

i=1

Gi (w, zi )

(A.1)

�tzi+Ui } {zi=&
1
=

G i (w, zi ), i=1,..., N

Here U0 , U1 ,..., UN # RN are convective velocity vectors, Gi : R_R � R are
smooth functions, strictly decreasing in the w variable and increasing in the
zi variable, and =>0 is a relaxation parameter. It is assumed that the equa-
tions Gi (w, z)=0 have a unique solution zi= gi (w) with gi (w) strictly
increasing and (globally) Lipschitz. The curve

w [ (w, g1(w),..., gN(w)), w # R

constitutes the manifold of local equilibria (or Maxwellian states).
Solutions of (A.1) satisfy the conservation law

�t \w+ :
N

i=1

zi++div \U0w+ :
N

i=1

Uizi+=0 (A.2)
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As = � 0, the local equilibria are enforced, and the limiting dynamics is
described by weak solutions of

�t \w+ :
N

i=1

gi (w)++div \U0w+ :
N

i=1

Ui gi (w)+=0 (A.3)

It is shown in ref. 2 that solutions of (A.1) emanating from BV-stable data
are compact in the strong L1-topology, and the moment u==w+�N

i=1 zi

converges, in the zero-relaxation limit = � 0, to an entropy solution of
(A.3). In addition any scalar multidimensional conservation law

ut+ :
N

i=1

�xi
Fi (u)=0, x # Rn, t>0 (A.4)

can be written in the form (A.3) and thus be recovered as an asymptotic
limit of a relaxation system (A.1), provided its characteristic speeds satisfy,
relative to the convective velocities of (A.1), a multidimensional analog of
the subcharacteristic condition.

It is a well known fact that the Kruzhkov(21) entropy conditions

�t |u&k|+ :
n

i=1

�xi
[(F i (u)&Fi (k)) sgn(u&k)]�0, in D$, for all k # R

(A.5)

guarantee uniqueness of weak solutions of (A.4). The system (A.1) is
equipped with a family of entropies,

�t \ |w&}|+:
i

|zi&*i |++div \U0 |w&}|+:
i

Ui |zi&*i |+
�

1
=

:
i

G(w, zi )[sgn(w&k)&sgn(zi&*i )] (A.6)

for }, *i # R, i=1,..., N. If *i are selected *i= gi (}) , then the right hand
side in (A.6) vanishes, and in the = � 0 limit we obtain the entropy condi-
tions (A.5) for k=}+ gi (}), (see ref. 2).

The following theorems use the technique of doubling of variables of
Kruzhkov(21) and Kuznetzov, (22) in the form formulated by Bouchut and
Perthame, (23) to provide error estimates. Theorem A.1 provides estimates
between approximate solutions of (A.1) and entropy solutions of the con-
servation law (A.4), and is an adaptation to (A.3) of ref. 23 (Thm. 2.1).
Theorem A.2 deals with estimates between approximate solutions of (A.1)
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and weak solutions of (A.1) for =>0 fixed, and it indicates that the entropy
conditions (A.6) allow to extend the Kruzhkov theory to the class of con-
tractive relaxation systems (A.1).

Theorem A.1. Let w, w� # L�
loc([0, �), L1

loc(R
n)) be right con-

tinuous with values in L1
loc(R

n). Assume that w satisfies, for } # R, the
entropy conditions

�t \ |w&}|+:
i

| gi (w)& gi (})|+
+div \U0 |w&}|+:

i

Ui | g i (w)& gi (})|+�0 (A.7)

and w� satisfies, for } # R,

�t \ |w� &}|+:
i

| gi (w� )& gi (})|++div \U0 |w� &}|+:
i

Ui | g i (w� )& gi (})|+
�K}+�t J}+div H}+ :

N

i, j=1

�xi xj
L (ij)

} (A.8)

in D$, where K} , J} , H}
i, L (ij)

} are local Radon measures that satisfy, for
some nonnegative }-independent Radon measures :K , :J , : i

H and : (ij)
L , the

bounds

|K}(x, t)|�:K (x, t), |H i
}(x, t)|�: i

H (x, t), i=1, 2,..., N

|J}(x, t)|�:J (x, t), |L (ij)
} (x, t)|�: (ij)

L (x, t), i, j=1, 2,..., N

in the sense of measures. Moreover, we assume :J # L�
loc([0, �), L1

loc(R
n)).

Then, for any T�0, x0 # RN, R>0, $>0, 2>0, &�0, and letting

M=Lip \U0w+:
i

U igi (w)+ , Bt=B(x0 , R+M(T&t)+2+&)

we have

|
|x&x0 | <R

|w(x, T )&w� (x, T )|+:
i

| gi (w(x, T ))& g i (w� (x, T ))| dx

�|
B0

|w(x, 0)&w� (x, 0)|+:
i

| gi (w(x, 0))& gi (w� (x, 0))| dx

+C(E t+Ex+EK+E J+EH+EL) (A.9)
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where C is a uniform constant and

E t= max
t=0, T

sup
0<s&t<$

|
Bt

|w(x, s)&w(x, t)| dx

Ex= max
t=0, T

sup
|h|<2

|
Bt

|w(x+h, t)&w(x, t)| dx

EK =||
0<t�T, x # Bt

aK (x, t)

(A.10)

EH=
1
2

:
N

i=1
||

0<t�T, x # Bt

: i
H (x, t)

EL=
1

22 :
1�i, j�N

||
0�t�T, x # Bt

: ij
L(x, t)

E J=\1+
T
$

+
MT

2+&+ sup
(0, 2T )

|
Bt

:J (x, t) dx

Proof. The theorem is an adaptation from Theorem 2.1 in ref. 23. To
see that, let u=w+�i gi (w), and for k # R define } # R such that
k=}+�i gi (}). Since gi are strictly increasing, sgn(u&k)=sgn(w&})
and

|u&k|=|w&}|+:
i

| gi (w)& gi (})|

(F j (u)&F j (k)) sgn(u&k)=U j
0 |w&}|+:

i

U j
i | g i (w)& gi (})|

where Ui=(U 1
i ,..., U N

i ), i=0, 1,..., N. Thus, the entropy conditions (A.7),
(A.8) are written in the form (A.5) and Theorem 2.1 in ref. 23 provides the
result. K

We now turn to Kruzkhov estimates for (A.1) away from the local
equilibrium =r0:

Theorem A.2. Let (w, Z), (w� , Z� ) # L�
loc([0, �), L1

loc(Rn)) be right
continuous with values in L1

loc(R
n). Assume that (w, Z) satisfies for } # R,
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4=(*1 ,..., *N) # RN the entropy conditions (A.6) and (w� , Z� ) satisfies, for
} # R, 4 # RN,

�t \ |w� &}|+:
i

|z� i&*i |++div \U0 |w� &}|+:
i

U i |z� i&*i |+
�

1
=

:
i

G(w� , z� i )[sgn(w� &k)&sgn(z� i&*i )]

+K}, 4+�tJ}, 4+div H}, 4+ :
N

i, j=1

�xixj
L (ij)

}, 4 (A.11)

in D$, where K}, 4 , J}, 4 , H i
}, 4 , L (ij)

}, 4 are local Radon measures that satisfy,
for some nonnegative (}, 4)-independent Radon measures :K , :J , : i

H and
:(ij)

L , the inequalities

|K}, 4(x, t)|�:K (x, t), |H i
}, 4(x, t)|�: i

H (x, t), i=1, 2,..., N

|J}, 4(x, t)|�:J (x, t), |L (ij)
}, 4(x, t)|�: (ij)

L (x, t), i, j=1, 2,..., N

in the sense of measures. Moreover, we assume :J # L�
loc([0, �), L1

loc(R
n)).

Then, for any T�0, x0 # RN, R>0, $>0, 2>0, &�0, and for M=
max0�i�N |U i |, Bt=B(x0 , R+M(T&t)+2+&), we have

|
|x&x0 |<R

|w(x, T )&w� (x, T )|+:
i

|zi (x, T )&z� i (x, T )| dx

�|
B0

|w(x, 0)&w� (x, 0)|+:
i

|zi (x, 0)&z� i (x, 0)| dx

+C(E t+Ex+EK+E J+EH+EL) (A.12)

where C is a uniform constant,

E t= max
t=0, T

sup
0<s&t<$

|
Bt

|w(x, s)&w(x, t)|+:
i

|zi (x, s)&z i (x, t)| dx

Ex= max
t=0, T

sup
|h|<2

|
Bt

|w(x+h, t)&w(x, t)|+:
i

|zi (x+h, t)&zi (x, t)| dx

and EK, EH, EL and EJ satisfy (A.10c�e).

Proof. In contrast to Theorem A.1, the terms (1�=) Gi (w, zi ) cannot
be treated as errors because = is not necessarily small. We first perform a
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doubling of variables in (A.6) and (A.11). Given two functions 8 # C �
c

((0, �)_RN) and ` # C �
c ((&�, 0)_RN), with 8�0, `�0, we set

,(x, t, y, s)=8(x, t) `(x& y, t&s)�0 (A.13)

Consider the weak form of (A.11) for the test function 9=,( } , } , y, s) with
( y, s) # RN_(0, �) fixed and }=w( y, s), * i=zi ( y, s). Similarly, consider
the entropy inequality (A.6) for the test function 9=,(x, t, } , } ), for
(x, t) # RN_(0, �) fixed and }=w� (x, t), *i=z� i (x, t). We add the two rela-
tions, integrate with respect to all variables and use the relations �t `=
&�s` and {x`=&{y` to obtain

&|||| `(t&s, x& y)[ |w( y, s)&w� (x, t)| (8t+U0{x8)(x, t)

+:
i

|zi ( y, s)&z� i (x, t)| (8t+U i{x 8)(x, t)] ds dt dy dx

�
1
= |||| ,(x, t, y, s) :

i

(Gi (w( y, s), zi ( y, s))&Gi (w� (x, t), z� i (x, t)))

_[sgn(w( y, s)&w� (x, t))&sgn(zi ( y, s)&z� i (x, t))] ds dt dy dx+R:

(A.14)

where

R:=|||| :K (t, x) ,(t, x, s, y)+:J (t, x) |�t,(t, x, s, y)|

+:
j

: j
H(t, x) |�xj ,(t, x, s, y)|

+ :
1�i, j�N

: ij
L(t, x) |�2

xixj
,(t, x, s, y)| ds dt dy dx

The monotonicity assumptions on Gi imply

:
i

(Gi (w( y, s), zi ( y, s))&Gi (w� (x, t), z� i (x, t)))

_[sgn(w( y, s)&w� (x, t))&sgn(zi ( y, s)&z� i (x, t))]�0
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and thus, for any =>0,

&|||| `(t&s, x& y) _\ |w( y, s)&w� (x, t)|+:
i

|z i ( y, s)&z� i (x, t)|+ 8t(x, t)

+\U0 |w( y, s)&w� (x, t)|+:
i

U i |zi ( y, s)&z� i (x, t)|+
_{x8(x, t)& ds dt dy dx�R: (A.15)

Although (A.15) involves differences of N+1 functions, because of the
Lipshitz continuity of the flux relative to the conserved quantity,

}U0 |w&w� |+:
i

Ui |zi&z� i | }� max
i=0,..., N

|Ui | \ |w&w� |+:
i

|zi&z� i |+
we may conclude the proof by selecting suitable 8 and ` and reproducing
the steps in the proof of Theorem 2.1 in ref. 23. K
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